Proceedings of the 26th Annual

International Symposium on

Microarchitecture

December 1-3, 1993 Austin, Texas

Sponsored by

IEEE Technical Committee on
Microprogramming and Microarchitecture
and
Association for Computing Machinery SIGMICRO

IEEE Computer Society Press
Los Alamitos, California

Washington . Brussels . Tokyo

A Microarchitectural Performance Evaluation of
a 3.2 Gbyte/s Microprocessor Bus *

Tim Stanley, Michael Upton, Patrick Sherhart

_

Trevor Mudge, Richard Brown

Advanced Computer Architecture Laboratory

Department of Electrical Engineering and Computer Science

University of Michigan
Ann Arbor, Michigan 48109-2122

Abstract

Several architectural innovations intended to reduce
access latency and improve overall throughput increase
system bandwidth requirements. Bandwidth scales with
clock speed, and can be regarded as an architectural re-
source to be applied to latency reduction. A properly
designed bus provides low arbitration latency and de-
lwers high sustained bandwidth.

This paper evaluates the performance of 3.2
Gbyte/s peak bandwidth, low-latency arbitration bus
connecting a GaAs superscalar CPU to g GaAs
memory management unit. A microarchitectural per-
formance model was written in the Verilog hardware
description language. Bus transactions characteristic
of the SPECint92 benchmarks and other workloads
were generated as inpul. Sustained bandwidths of 1.68
Gbytes/s were achieved with arbitration costs of less
than 0.5 cycles per data transfer.

Keywords: 1/0 Mucroarchitecture, Bandwidth,
Latency, Hardware Description Language, Perform-
ance Modeling.

1 Introduction

Processor clock speeds are increasing at 50 % per
vear [1], due to technology improvements and a better
understanding of the interaction between technology
and architecture. Superscalar CMOS microprocessors
have reached clock speeds of 200 MHz [2]; an ECL mi-
croprocessor has achieved speeds of 300 MHz [3]; and
GaAs promises to become a viable processor techno-
logy at speeds exceeding 200 MHz [4].

*This work was supported by the Advance Research Projects
Agency under DARPA/ARO Contract DAALO03-90-C-0028.

1072-4451/93 $3.00 © 1993 IEEE

31

Meanwhile, it has been widely observed that the
speed of DRAM technologies is increasing at only
about 7 % per year and is not keeping pace with micro-
processor performance. For this reason, the impressive
gains of microprocessor clock speeds may not directly
translate into higher system performance. Necessar-
ily, numerous architectural innovations have been de-
veloped to minimize the processor and memory hier-
archy performance mismatch (see Table 1).

Some researchers suggest that a reduction in
latency, rather than an increase in peak bandwidth
might lead to faster machines [1]. We agree and would
be pleased to find memory access latencies scaling with
our clock speed. Until that time, we note that:

e Because memory speeds have not kept pace with
clock speed, relative access latency appears to
have increased from a system perspective.

e Prefetching and streaming techniques, intended
to reduce latency, indeed require additional sys-
tem bandwidth.

e Though latency does not scale with processor
clock frequency, pin bandwidth potentially scales
when using advanced packaging technologies.

¢ High peak bandwidths are necessary to support
latency reduction techniques and multi-issue im-
plementations. Few implementations have failed
for an abundance of bandwidth and we expect
that trend to continue.

For these reasons, we are interested in very high
bandwidth inter-chip communication in GaAs micro-
processor systems. While GaAs offers impressive on-
and off-chip bandwidth, it does not offer dense, low-
power, short-term storage so well exploited by recent

Architectural Technique

| Effect on latency and bandwidth

Latency Reduction

Caches and write-buffers

use locality of reference and the size/speed characteristic of small memory structures to
provide low-latency, high-bandwidth access on the frequent cache hit case, and long latency,
low bandwidth access on the infrequent cache miss case.

Hardware prefetching [5], stream
buffers [6], and software-directed
prefetching [7]

effectively trade increased bandwidth for reduced latency.

Latency Tolerance

Non-blocking and
caches [8]

lockup-free

lessen the impact of data dependencies by allowing execution to proceed while a cache miss
is serviced.

Dynamic scheduling techniques

trade additional latency to achieve better latency tolerance and high throughput. This is an
instance where latency is transformed to increased throughput (bandwidth).

Architecturally specified load and
branch delay slots [9]

tolerate latency by filling empty pipeline stages.

Compiler loop unrolling and code
reordering

tolerate latency by exposing instruction and data parallelism.

Increased Bandwidth Requirements

Multi-issue processors

Improve system performance by increasing the actual bandwidth built into the system but
further exacerbate the impact of latency on overall system performance. In general, load /store
implementations intended to perform more than 1 instruction per cycle are increasingly more
sensitive to branch, load, and cache miss latency [10]. These architectures demand concurrent

I- and D-stream access.

Table 1: Effect of Recent Architectural Trends on System Bandwidth and Latency.

Recent architectural trends can be grouped into three categories: techniquesto reduce average access latency;
techniques to tolerate latency; and techniques that use additional system bandwidth to increase throughput.

CMOS processors. Limited GaAs integration densities
force us to consider multi-chip partitions with accom-
panying off-chip latencies that must be tolerated in
the overall design. We believe that bandwidth is a re-
source to be applied to the latency reduction problem.

1.1 Contributions of this Work

To address these concerms, our research concen-
trates on the interaction of architectural innovations
on bandwidth-latency requirements for high perform-
ance GaAs systems. As GaAs designers, we are com-
pelled to consider architectural alternatives that trade
advantages of our technology to compensate for its
limitations; specifically, can we architecturally trade
bandwidth to and from smaller and more specialized
local storage to improve average access latency? This
paper provides a detailed and accurate evaluation of
the bandwidth and latency performance a micropro-
cessor bus designed to provide 3.2 Gbyte/s bandwidth
and near zero cycle arbitration overhead.

A system overview and the bus protocol are de-
scribed in Section 2. Section 3 discusses the hard-
ware description language (HDL) model of this bus in-
terface unit (BIU) and the behavioral system models
representing the design space of our GaAs multi-chip

32

system. Section 4 describes the bus transaction mixes
characteristic of the SPECint92 benchmarks and other
workloads. Performance measurements are used to de-
termine the bandwidth requirements, arbitration effi-
ciency, usage patterns, and performance sensitivities
of the CPU, MMU, and BIU system. In Section 5,
conclusions are drawn regarding the ability of the bus
and arbitration scheme to support a 300+ MHz GaAs
chipset and the benefits of microarchitectural perform-
ance analysis using HDLs are discussed.

2 Aurora3 Organization

We are building a high performance GaAs chip set,
named Aurora3 and shown in Figure 1. The 300+
MHz superscalar CPU chip implements a subset of
the the MIPS ISA [9], has a non-blocking D-cache,
and provides hardware I- and D-stream prefetch-
ing. The 3004+ MHz Cache and Memory Manage-
ment Unit (MMU) implements concurrent I- and D-
stream datapaths, off-chip secondary caches, hardware
prefetching, memory management support, and an
I/O bus interface. GaAs integration levels do not yet
permit a single-chip implementation of this system.
The target bandwidths and latencies for the major

Systemn Bandwidths

32 Kbyte

- " Direct-mapped |
Chip Bus Bandwidth | _Latency write-through :
cPU Register File 4.8 Gbytes | 1 CPU cycle 8 word line
(300 MHz) (4 read ports) 1K tags
Registor File 2.4 Gbyte's | 1CPU cycle crPy
(2 writa ports) Transmit i b 4
L1-t cache 2.4 Gbyte/s | 1 CPU cycle . FIFO
L1-Deache'FPU read 2.4 Gbyte/s |3 CPU cycles Rt 1 .
Li-Doacho/FPU wiite | 24 Goytels |3CPUCycles | | (12 entries
CPUMMU | BIU (400 MHz) 32Gbytels | 20-100 5 .
BiU cycles P
o L]
MMU L2-tcache/Rambus 1 Gbyte/s hit>72 ns [CH
(300 MHz) miss > 246 ns 'g :
12-Decache/Rambus 1 Gbyta/! hit >72 -1
® s » 046 rs I=H & | (32 data, 2 arbitration, 4 clocks)
VO intertace 100 Mbyte/s o!
(non-GaAs) 3.
m;
FPU FP Register file 8Gbyte's | 1FPU cyde H MMU
(250 MHz) | (4 64-bit read ports) *
FP Register file 2Gbyte's | 1 FPU cycle Receive L2 DCache/
(1 64-bit write port) - (16HF? » RAMbus
entries - §- entries 32 Mai
} ain Memory
L2 ICache/ [+ of 84-bits) 7~
RAMbus »
Main Memory A * ocomo | 2
_{conwrol) | (PLD-based) [7

Figure 1: Aurora3d System Block Diagram and Bus Bandwidths.

Aurora3 system busses are tabulated in Figure 1.

Over 180 pins are dedicated to the data cache and
FPU interface, providing the maximum bandwidth at
the top of the memory hierarchy (refer to Figure 1).
For our prototype implementation, the CPU package
is constrained to 256 signal pins. A major design de-
cision involved the most effective use of the remaining
pins to achieve a high-bandwidth, low-latency connec-
tion between the CPU and MMU. More aggressive
packaging schemes such as multi-chip modules allow
higher off-chip I/O pin counts. However, power con-
siderations still make a narrow, high bandwidth chan-
nel a more desirable alternative than simply building
a wider bus.

2.1 Bus Interface Unit

The Bus Interface Unit connects the CPU to the
MMU via a unique bidirectional 32-bit bus, as shown
in Figure 2. To tolerate transaction latency, mul-
tiple pending requests are buffered in the BIU queues
(FIFOs). The FIFOs also allow the BIU to operate
asynchronously with respect to the CPU and MMU.
Control is passed between these 3 clock domains us-
ing synchronizers, allowing each domain to operate at
its own maximum frequency. A consequence of this
latency-tolerant organization is that a memory read
transaction will suffer 4 synchronization penalties dur-

33

ing the round trip.

The design philosophy is to stream data through
the FIFOs at high-bandwidth (a GaAs advantage),
rather than dedicate large amounts local memory for
short-term storage (costly in GaAs). The bus mas-
ter will burst the entire contents of its transmit FIFO
(tFIFO) to the receiver before relinquishing the bus.
Transmit FIFOs are 12 64-bit entries in size and re-
cetve FIFOs (rFIFO) are 16 64-bit entries in size. An
tFIFO can hold an entire tFIFO burst.

2.1.1 BIU Timing

The maximum bandwidth available across a bus is lim-
ited by several factors including interconnect medium
bandwidth, signal rise/fall times, signal setup/hold
times, clock skew, and transmission delay. The ideal
bus would be limited by the bandwidth of the inter-
connect medium, and failing this by the signal rise /fall
times. We have adopted a signaling scheme similar to
that used by Rambus ! [11] that is limited by the sig-
nal rise/fall times rather than by clock skew or signal
setup/hold time. It is suitable for board level and
multi-chip module packaging, and matches the clock
bandwidth with the data bandwidth.

Figure 3 shows a typical BIU transaction. Each
chip generates its own transmit clock that is shifted

'Rambus is a trademark of Rambus Inc.

CPU Transmit Clock 2

E Arbitration Bus

7

32 Data Bus

MMU Transmit Clock 2

rd

+— CPU + ! MMy ——
Clock Domain | Clock Domain I Clock Domain
Figure 2: Bus Interface Unit Block Diagram.
\ BIU cycle |
; , Arbitration Bus Encodings:

1
Transmit_clock H . 00:
! ot:
1
. 1
_____ ' PR b 5
l' \ - ..I "
R C =88 =T 002000006
L} 1 1
1

Bus is idle.

MMU is transmitting to CPU.
10: CPU is transmitting to MMU.
Callision state. Either:

the CPU and MMU simultaneously initiated a
transaction resuiting in a true collision, or

Arbitration
Bus<1:0>

the MMU or CPU (FIFO filled and the receiving

Cycle 0 vsw !

)
)
:)
l CPU \ idie y MMU .: MMy ‘ MMU—X;MMU—XJMU\ Idie
Y |
i 1
1 1

CycleN ' CycleNs1 CydeNs2 Cyclo Ne3 Cycle N+4 sre

chip is back-pressuring the sending chip.

The sender aborts the transaction and the
MMU gets the bus.

Figure 3: Bus Interface Unit Cycle Timing. CPU Load Transaction.

in phase by 90 degrees with respect to the data. By
transmitting the clock and data to the receiver to-
gether, maximum setup and hold times are achieved.
Clock skew is still a critical factor, but is minimized
by uniformly routing the clock and data lines together
so that clock skew is equal to data skew. Data is edge-
triggered by the receiver on both edges of the clock,
reducing the required clock bandwidth by a factor of
two when compared to a system that transmits data
only on a single clock edge. A BIU transmitting 4
bytes of data on each 400 MHz clock edge yields a 3.2
Gbyte/s peak bandwidth.

2.1.2 BIU Arbitration

The BIU interface uses a carrier-sense, distributed and
low-latency arbitration scheme. A 2-bit arbitration
bus connects the CPU and MMU using ECL wire-OR
signals (see Figure 3 for bus encodings). When the
bus is idle these lines are pulled low by the ECL ter-

minators and either unit is free to immediately begin
transmitting data. As soon as the receiver recognizes
the transmission, it inhibits its own transmissions to
avoid bus contention.

This 2-party, collision-based arbitration scheme is
designed to fall into a favorable ping-pong pattern
where each chip alternates streaming the entire con-
tents of its tFIFO to the other chip with no collisions,

- and therefore, zero arbitration latency overhead.

When the CPU sends data, it drives a binary
< 10 > onto the arbitration bus. When the MMU
sends data it drives < 01 >. If both units transmit
simultaneously, the bus will be < 11 >. This is called
a true colliston and is similar to a collision in the Eth-
ernet protocol.

If either rFIFO controller detects that its rFIFO is
full while receiving a transmission, it forces the arbit-
ration bus into the < 11 > collision state to abort the
transaction. Partial bursts in the rFIFO are discarded
and must be retransmitted again later.

1 ———

After either collision type, both units stop trans- 3 Simulation Method
mission, and the MMU takes control of the bus even

if its tFIFO is not yet ready to transfer. The MMU Architectures are often evaluated using perform-
has priority because it is supplying data previously ance models written in C or C++. These models de-
requested by the CPU and this avoids any possibility scribe the computer structures at a level of abstraction
of deadlock. Also, the MMU to CPU bandwidth re- as low as the register-transfer level (RTL) but typically
quirement exceeds the CPU to MMU requirement for much higher. The input to these models is an address

all workloads. This method of deadlock avoidance has trace of a workload and a s i

imulator configuration—The
e thefavorabie‘ﬁdi?éﬂ’%t‘“m balancing the output is the corresponding predicted performance.

system by giving the more demanding MMU priority This prediction is accomplished by counting the oc-
under heavy loads (see Section 4). currence of specific events (e.g., cache misses) during
the simulation, assigning an average cost to each event
(e.g., cycles to service the cache miss), and summing
the products of counts and costs. This method is suf-
ficient for high-level performance analysis.

Performance evaluation at the microarchitecture
level, i.e., the RTL level of abstraction, must be more
accurate. Designers often notice that cost assumptions
used in the high-level performance model are dramat-
ically oversimplified once low-level and complex im-
plementation details are considered. For example, the
time to arbitrate for a shared bus is longer than pre-
dicted; the time to turn a tristate bus from driving to
receiving adds unanticipated latency to the cache fill
control flow; latency-sensitive data spends more time
in a queue when the system is under a heavy load than
first predicted; etc. Moreover, a microarchitect needs
to explore the design space toward identifying an im-
plementation with the appropriate cost/performance.
Many design methodologies preclude this option by
presenting a detail-intensive level of abstraction to the
microarchitect that is too low.

2.1.3 BIU Transactions and Transfers

Each BIU transaction begins with a CPU command-
address pair. Referring to cycle 0 of Figure 3, the
command is removed from the CPU tFIFO and trans-
mitted to the MMU 90 degrees prior to the rising
transmit clock edge. The address is transmitted 90 de-
grees prior to the falling edge to complete the pair. If
the transaction is a CPU store request, this command-
address pair is immediately followed in cycles 1-4 by 8
words of write data (organized as 4 pairs) from the
CPU tFIFO. The MMU does not send any return
status back to the CPU once it accepts the entire
request. Thus, a CPU to MMU store transaction is
composed of a single transfer of information. A burst
1s composed of multiple transfers.

Because the latency to the MMU and secondary

cache is many cycles, it is undesirable to hold the bus 3.1 BIU Structural Model

for the duration of a load or prefetch transaction. If X Lo .

the CPU command-address during cycle 0 is a load or We have overcome this limitation in the design and
prefetch request, the BIU uses a split-transaction pro- evaluation 02f the BIU by structurally modeling with
tocol composed of two individual transfers: the CPU the Verilog HDL. This hlgh-levgl language descrip-
request and the MMU response. The MMU holds the tlon is then compiled and synthesized to VLSI layout
request in its rFIFO until it can be processed. The using the EPOCH toolsuite 2. Thus, the' models are
CPU uses non-blocking caches, and is free to initiate Implementation-accurate and design quality is tested
more requests if possible. by reviewing the output of the physical design tools.

The BIU is a complex and performance-critical sub-
The MMU moves the transaction from its rFIFO system of Aurora3. The bidirectional bus collisions

to a small staging FIFO in either the I- or D-stream and rFIFO back-pressures yield complex and dynamic
functional unit. This keeps the head of the MMU behavior. BIU datapath and controller design explor-
IFIFO exposed for further I- and D-stream concur- ations are readily accomplished by simply editing the
rency. When the data is fetched from memory, the Verilog language source code description, running the

command-address pair and 8 words of read data (or- BIU under various workloads and monitoring its per-
ganized as 4 pairs) are loaded into the MMU tFIFO. formance.

trhls tr ansfer is then sent bac.k to the CPU a's_Shown 2Verilog is a trademark of Cadence Design Systems, Inc.

in cycles N through N+4 of Figure 3, completing the EPOCH is a trademark of Cascade Design Automation

load or prefetch split-transaction. Corporation

35

Experimental Values
Input Parameters & Description SPECint92] DAXPY
Workload | Mean rate at which the CPU generates (i.., places command/address | 8 CPU cycles { 2 CPU cycles
in CPU tFIFO) new transactions.
Instruction-stream / Data-stream request ratio. 70/30 0/100
Load/Store /Prefetch % request mix. 20/60/20 0/34/66
CPU Clock speed. 298 MHz
Number of pending transactions. 1to 16
BIU Clock speed. 397 MHz
MMU Clock speed. 298 MHz
Mean latency for MMU to retire (i.e., begin placing return data in | 8 MMU cycles | 2 MMU cycles
MMU tFIFO) a load or store request.
Mean latency for MMU to retire a prefetch request. 2 MMU cycles | 2 MMU cycles

Table 2: Aurora3 SPECint92 and DAXPY Workload and System Configurations.

The most interesting performance results are observed when the bus load is a function of the number of
pending transactions, i.e., given a non-blocking cache, the number of outstanding load and prefetch requests

that can be active at one time without stalling the CPU.

The issue and retire rates are randomly generated using a normal distribution function. The mean values

are listed above.

3.2 System Behavioral Model

Behavioral Verilog CPU and MMU models exer-
cise the structural Verilog BIU model. These models
have several configurable parameters to generate the
desired workload and system characteristics. The val-
ues assigned to each parameter for two workloads of
interest to this study are shown in Table 2.

The rate at which the CPU issues bus transactions,
the ratio of I- to D-stream transactions, and the mix
of load/store/prefetch transactions were determined
by traditional trace-driven simulations of the Aurora3
system using the SPECint92 benchmarks.

We assume that the CPU can dispatch up to 4 non-
blocking D-stream loads at once, and that our hard-
ware prefetch strategy will issue one prefetch request
for every load request for a total of 8 outstanding D-
stream transactions. An I-stream load request also
results in a prefetch for 2 more additional outstanding
requests. As such, we are interested in the BIU per-
formance when the range of outstanding transactions
is varied from 1 to 16.

The DAXPY workload configuration represents
the CPU running a DAXPY inner-loop having 2
load/1 store sweeping through the small primary D-
cache, and all I-stream references are captured by the
primary on-chip I-cache. Due to high spatial D-stream
locality of a DAXPY inner-loop, we expect aggress-
ive hardware prefetching to be successful through the
memory hierarchy and assign lower MMU response
latencies accordingly. We use this workload to ex-

36

pose the BIU’s bandwidth, latency, and arbitration
performance limits as bus load increases from a real-
istic number of outstanding prefetches (1-4), to a very
heavy bus load (8-16).

The behavioral CPU and MMU models comprise a
self-checking system. Two copies of memory are main-
tained. One copy is used by the MMU to service CPU
requests; the other copy is used by the random trans-
action generating procedures of the behavioral CPU
to hold expected answers. All transactions are veri-
fied for correctness. Also, an error is indicated if a
transaction does not return within a maximum time.

4 Experiments and Analysis

All graphs represent the mean of 20 simulation runs
per data point at 10,000 CPU cycles per simulation
run.
4.1 SPECint92 Workload Results

Figure 4 shows that the average bandwidth
achieved as a function of the number of pending
transactions plateaus at 1359 Mbytes/s (of nearly 3.2
Gbyte/s raw available bandwidth) between 8 to 16
outstanding transactions. This bandwidth represents
cumulative Command/Address and Data communica-
tion across the bus. The MMU transmits about 71 %
of the bandwidth, and the largest component of BIU
traffic for this workload is for the MMU I-stream. For

this workload, 31 % of the total traffic is dedicated to
Command/Address transmission.

programmable time for the MMU to retire a request,
is 8 cycles. For this configuration, between 16 and 39
cycles of memory access latency are spent on the BIU

FIFO communication mechanism.
50 -[- .
- » s+ /
S Total
g 120 + 0 -+
2 O Latency-t
g 1000 'g 35 *L‘hﬂq&
g g =0 Latency-3
z % 4+
B w0 4+ —o z X oyt
@ S
o) N
o 80 -1 e
2
=0 +
“T g Fe 'Y
S+ o *
-~ ol -3
200 //: . — x/x/ # "
,(/g—__{' " 10 -+ - o
0 e — s+ /f
o 2 ‘ [[10 12 14 18
Number of Pending Transactions o .J t ; 4 } ! s !)

Figure 4: Bandwidth for SPECint92.

Bandwidth nearly levels off at

1359 Mbyte/s at 8
pending transactions.

To understand why average bandwidth nearly levels
off when there are 8-16 pending transactions, refer to
the load latency breakdown shown in Figure 5. Total

load latency (in CPU cycles) can be broken down into
4 legs of the round-trip:

Latency-1 time from when command-address enters the CPU
tFIFO until it is removed from the head of the MMU
rFIFO and dispatched to ejther the I- or D-stream MMU
functional unit staging FIFO,

Latency-2 time from Latency-1 until the MMU I- or D-stream
functional unit removes the command-address from its
local staging FIFO,

Latency-3 time from Latency-2 until the MMU begins loading
the response into its BIU tFIFO,

Latency-4 time from Latency-3 until the command-address is
removed from the head of the CPU (FIFO.

As the number of pending transactions increase, total
load latency increases from 26 cycles to 47 CPU cycles
at 16 pending transactions. The Latency-2 component
of total latency, Le., the time a transaction spends
in the MMU I- or D-stream functional unit staging
FIFO waiting to be serviced, strongly increases from
1 to 8 pending transactions. It levels off at about
15.9 cycles above 8 pending transactions and is the
largest contributor to total latency. Latency-3, the

37

Number of Pending Transactions

Figure 5: Load Latency for SPECint92.

The major latency component is due to Latency-2,i.e.,
time spent in the MMU staging FIFOs.

When the number of pending transactions is
between 8 and 16, the BIU bandwidth is sufficient
to support this system. The MMU rFIFO buffers
the CPU requests. The MMU L and D-stream con-
trollers operate concurrently and effectively keep up
with the CPU requests, though latency increases. The
CPU can not keep 16 outstanding transactions in flight
because the MMU I- and D-stream datapaths have
enough bandwidth to retire requests quickly. Traffic
is light enough that neither the CPU, nor the MMU
tFIFO back-pressures the system. Bandwidth reaches
a plateau as each chip takes turns bursting its tFIFO
contents to the other chip’s rFIFO. The average CPU
burst length about 3.4 fifo entries in length, and the
average MMU burst length is 7.4 fifo entries in length.

The 12-entry tFIFOs are full less than 10 % of the
time, and the collision overhead, our measure of bus
arbitration cost, is quite low. About 8 % of bursts
result in a true bus collision. The SPECint92 bench-
marks are not particularly bandwidth intensive com-
pared to scientific code having a high degree of data
parallelism. Therefore, the remainder of this analysis
will focus on a different workload and system configur-

ation that better explores the BIU performance limits.
4.2 Scientific Workload Results

To further stress the system and bus load, a work-
load configuration representing the CPU running a sci-
entific benchmark was developed. This configuration
represents, e.g., a DAXPY inner-loop having 2 load/1

latency breakdown. Latency starts as low as 20 CPU
cycles, but climbs dramatically to 84 CPU cycles as
the bus load increases. Only 2 cycles are due to the
actual MMU (Latency-3), the remainder are attrib-
uted to the FIFO-based communication. This dra-
matic latency increase is due to the lack of I- and D-
stream concurrency in the MMU. Though bus band-
width remains quite high, the MMU D-stream func-

store sweeping through the small primary D-cache,
and all I-stream references captured by the primary
on-chip I-cache.

Referring to Table 2, the mean rate at which the
CPU initiates transactions was reduced to 2 cycles and
the rate at which the MMU services loads and stores
was reduced to two cycles. The real CPU running
a DAXPY inner-loop will aggressively and accurately
prefetch all load references. Prefetch requests account
for 66 % of transactions and 34 % are store requests.
This optimistic and aggressive configuration is inten-
ded to be quite bandwidth intensive.

1800

1800 L

1200 4

000 4

BIU Bandwidth Mbytes/s
g

Number of Pending Transactions

Figure 6: Bandwidth for DAXPY.

Bandwidth reaches 1681 Mbyte/s for 4 pending trans-
actions before decreasing slightly to 1628 Mbytes/s at
16 pending transactions.

The average bandwidth required for this experi-
ment was as high as 1681 Mbytes/s for 4 pending
transactions, and dropped slightly to 1628 Mbytes/s
for 16 pending transactions (see Figure 6). In this
configuration, the system uses over 50 % of the 3.2
Gbyte/s peak bandwidth.

Figure 7 shows the average prefetch transaction

38

tional unit can not keep pace with the CPU trans-
action rate. Latency-1 (latency in the MMU rFIFO)
is the largest contributor to overall latency for this
workload and does not level off to a steady value.

90 -

Load Latency (CPU cycles)

Number of Pending Transactions

Figure 7: Prefetch Latency for DAXPY.

As bus load increases, the MMU rFIFO back-pressures
the system. This drives total latency from 20 to 84
CPU cycles.

An indirect cost of the FIFO-based communication
i1s the latency increase as bursts are aborted and re-
attempted due to rFIFO back-pressure. The impact
of the MMU rFIFO overload can be readily seen on
the average collisions per successful burst graph and
the BIU FIFO utilization graph (Figures 8 and 9.
Recall that a burst is defined as a transmission of the
entire tFIFO contents by the sender. The total col-
lisions/burst curve never levels-off and 2 regions of
behavior are observed.

From 1 to 4 pending transactions, the BIU and the
MMU have sufficient bandwidth to support the chip-
set. All bus collisions are due to true bus contention,
1.e., both chips attempt to transmit at nearly the same
time. The total traffic requirements are quite low, and

|
i
|
\
|
i

Coﬂisior;plburst

Nurmber of Pending Transactions

Figure 8: Collisions/burst for DAXPY.

MMU rFIFO back-pressures dramatically increase
with bus load. True arbitration collisions level off as
the back-pressure dominates performance.

neither chip’s rFIFO affects the collision rate. Because
of the limited traffic, the average CPU and MMU
burst lengths are 4.0 and 6.5 fifo entries in length re-
spectively. In fact, because of the limited traffic and
small burst length, the FIFO controllers do not fall
into the favorable ping-pong behavior and a signific-
ant peak in true collisions is seen when the number
of outstanding transactions is 2. The desirable ping-
pong effect between the two chips does not take effect
until 4 pending transactions are allowed, and the av-
erage burst size increases to 4.8 for the CPU, and 7.5
for the MMU.

True collision recovery has a cost of 3 BIU cycles
wasted before the collision occurred and 7 BIU cycles
to turn the bus over to the MMU. These cycles are re-
garded as arbitration overhead brought on by the col-
lision. In this region, the arbitration overhead reaches
about 0.65 BIU cycles/burst at 2 pending transac-
tions, and falls to 0.47 BIU cycles/burst at 4 pending
transactions.

From 8 to 16 pending transactions, the effects of
the full MMU rFIFO back-pressuring the system are
seen. True collisions drop slightly and level off at
about 0.04 collisions/burst with an arbitration cost
of 0.4 BIU cycles/burst. However, MMU rFIFO back-
bressures increase dramatically from 0 collisions /burst
at 4 pending transactions to 0.15 collisions/burst.

39

CPU rFIFO back-pressures remain at 0. In this re-
gion, bandwidth remains high but latency strongly in-
creases.

The utilization of the four BIU FIFOs is shown in
Figure 9. The MMU rFIFO is rarely empty after 8
pending transactions are allowed. This correlates with
the collisions/burst graph showing that this rFIFQO

= ing the biis as a strong
function of number of pending transactions. It follows
that the CPU tFIFO is full 43 % of the time, no new
transactions are initiated, and the CPU is stalled. The
MMU tFIFO, and the CPU rFIFO are not under such
stress, though they are increasingly utilized.

100

0 4 ~———— CPU FIFO Empty

00— GPUFIFO Fur
80 4
- MU FIFO Empty

o+ Qe MMU (RO Filt

% of time FIFO empty or full

Number of Pending Transactions

Figure 9: FIFO Utilization for DAXPY.

The MMU rFIFO is seldom empty and back-pressures
the system.

At this point, the reasons for the slight decrease
in average bandwidth seen in Figure 6 become clear.
When the MMU rFIFO fills and back-pressures the
bus, the CPU relinquishes the bus and the MMU gains
bus ownership and stalls until it has something to re-
turn to the CPU. If the CPU tFIFO is full, or if the
maximum number of pending transactions has been
reached, the CPU stalls. Of course this back-pressure
strongly suppresses bandwidth.

In addition to the lack of bus activity in this cir-
cumstance, the BIU system falls out of the favorable
ping-pong behavior. This limits the burst length to
less than the size of a tFIFO. In this instance, the
BIU will send back the first complete transfer that is

in the MMU tFIFO, i.e., a single transfer of 5 MMU
tFIFO entries (1 Command/Address, 4 Data pairs).
Because the MMU rFIFO has a dominant damp-
ing effect on total bandwidth in this configuration, we
do not see any Ethernet-like effect where a high fre-
quency of true contention collisions causes a precipit-
ous bandwidth drop-off when the bus is under heavy

scription languages coupled with compilation and syn-
thesis tools, allow design exploration from the RTL
level through physical implementation from a high-
level of abstraction. These are powerful microarchi-
tectural design capabilities.

load. In fact, the bus has not approached the limits of
its arbitration mechanism, it has reached the D-stream
bandwidth performance limits of the behavioral MMU
model. Increasing the MMU rFIFO size might filter
out some back-pressures during peak request periods,
but the MMU D-stream controller alone can not keep
pace when more than 4 outstanding CPU D-stream
requests are allowed at an issue rate of 2 CPU cycles.

5 Conclusions

Bandwidth scales with clock speed, and is regarded
as an architectural resource that can be applied to
latency reduction. Several architectural innovations
intended to reduce access latency and improve overall
throughput require increased system bandwidth.

Using realistic bus workloads, sustained bus band-
widths of over 1.6 Gbyte/s have been simulated on
an HDL model of a CPU to MMU bus having a peak
bandwidth of 3.2 Gbyte/s. This bandwidth is suffi-
cient to support our 300 MHz GaAs chipset. However,
at very high bus loads, bandwidth remains high but
latency increases become intolerable.

The distributed collision-based bus arbitration is
not the limiting performance effect. The bus falls into
a favorable ping-pong pattern with alternating chips
transmitting a full tFIFO to an available rFIFO. When
this occurs, the arbitration overhead is between 0.4
and 0.7 cycles/burst. At high bus loads, the MMU
rFIFO back-pressures dominate performance.

Predictably, latency tolerance costs additional
latency in this highly partitioned, FIFO-based sys-
tem. Communication latency attributed to the BIU
FIFOs is as low as 18 cycles for light bus loads, but
climbs rapidly under heavy bus loads. This directly
affects secondary cache latency and might not exist if
the CPU and MMU were implemented in a technology
that facilitated a single-chip implementation.

The performance results gained by using HDLs as
modeling languages are extremely accurate - the sys-
tem under test captures the true dynamic complex-
ity of the microarchitecture. The results of these
low-level simulations provide a justified cost basis for
higher level architectural simulations. Hardware de-

40

References

[1] J. L. Hennessy and N. P. Jouppi, “Computer tech-
nology and architecture: An evolving interaction,”
IEEE Computer, vol. 24, pp. 18-29, September 1991.

D. Dobberpuhl, et al., “A 200 MHz 64b dual-issue
CMOS microprocessor,” in 1992 IEEE International
Solid-State Circuits Conference Digest of Technical
Papers, pp. 254-256. IEEE, Feb 1992,

N. Jouppi, et al., “A 300 MHz 115W 32b bipolar ECL
microprocessor with on-chip caches,” in 1993 IEEE
International Solid-State Circuits Conference Digest
of Technical Papers, pp. 84-85. IEEE, Feb 1993.

M. Upton, T. Huff, P. Sherhart, P. Barker, R. McVay,
T. Stanley, R. Brown, R. Lomax, T. Mudge, and
K. Sakallah, “A 160,000-transistor GaAs micropro-
cessor,” in 1993 IEEE International Solid-State Cir-

custs Conference Digest of Technical Papers, pp. 92—
93. IEEE, Feb 1993.

A. Smith, “Sequential program prefetching in memory
hierarchies,” IEEE Computer, vol. 11, no. 12, pp. 7-
21, December 1978.

2]

N. Jouppi, “Improving direct-mapped cache perform-
ance by the addition of a small fully-associative cache
and prefetch buffers,” in Proceedings of the 17" An-
nual International Symposium on Computer Architec-
ture, pp. 364-373, New York NY (USA), May 1990,
IEEE.

D. Callahan, K. Kennedy, and D. Porterfield, “Soft-
ware prefetching,” in Proceedings of the 4'* Interna-
tional Conference on Architectural Support for Pro-

gramming Languages and Operating Systems, pp. 40—
52. ACM, 1991.

D. Kroft, “Lockup-free instruction fetch/prefetch
cache organization,” in Proceedings of the 8" Annual
International Symposium on Computer Architecture,
pp. 81-87, 1981.

G. Kane and J. Heinrich, MIPS RISC Architecture,
Prentice Hall, 1992.

[9]

[10] M. Johnson, Superscalar Microprocessor Design,

Prentice-Hall Inc., 1991.
(11]

N. Kushiyama, et al., “A 500-megabyte/s data-rate
4.5m DRAM,” IEEFE Journal of Solid-State Circuits,

vol. 28, no. 4, pp. 490498, April 1993.

